If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-120x-200=0
a = 12; b = -120; c = -200;
Δ = b2-4ac
Δ = -1202-4·12·(-200)
Δ = 24000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24000}=\sqrt{1600*15}=\sqrt{1600}*\sqrt{15}=40\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-40\sqrt{15}}{2*12}=\frac{120-40\sqrt{15}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+40\sqrt{15}}{2*12}=\frac{120+40\sqrt{15}}{24} $
| 5/2=-d2/4 | | 2y=-3+30 | | k+49=94 | | (x-23)=57 | | 2/3(10x+5)=−14 | | s-36=82 | | 7d+10=31 | | 4/12=-2b/13+6b/26 | | 1/3x−6=15 | | -4r=(-18.4) | | m−2=24 | | 14=13.7-3x | | 5x2-49=0 | | 34=2(7x) | | (5.6x10^5)÷=(6.4x10^2) | | 5x^2+20=145 | | 5x^+20=145 | | 36.3÷y=12.1;2,3,4 | | d/(-29)=25 | | 530=x10 | | 5x-2=7+2× | | 154×x=-22 | | p-4=6/p= | | 7/3=g+2/3 | | p-4=6/p=10 | | 3x+3.46=28 | | 7x112=8+3x1 | | 2x^2+16-912=0 | | t3=13 | | 5c-33=9-3 | | 4x+12-6x=6 | | 22c=(-264) |